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We present time-dependent density-matrix renormalization-group �DMRG� results for strongly interacting
one-dimensional fermionic systems at finite temperature. When interactions are strong the characteristic spin
energy can be greatly suppressed relative to the characteristic charge energy, allowing for the possibility of
spin-incoherent Luttinger liquid physics when the temperature is high compared to the spin energy, but small
compared to the charge energy. Using DMRG we compute the spectral properties of the t-J model at arbitrary
temperatures with respect to both spin and charge energies. We study the full crossover from the Luttinger
liquid regime to the spin-incoherent regime, focusing on small J / t, where the signatures of spin-incoherent
behavior are more manifest. Our method allows us to access the analytically intractable regime where tem-
perature is on the order of the spin energy, T�J. Our results should be helpful in the interpretation of
experiments that may be in the crossover regime, T�J, and apply to one-dimensional cold atomic gases where
finite-temperature effects are appreciable. The technique may also be used to guide the development of ana-
lytical approximations for the crossover regime.
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I. INTRODUCTION

A remarkable aspect of one-dimensional interacting elec-
tron systems �we will use one-dimensional electrons as a
concrete example throughout the paper, but our results im-
mediately generalize to any system with an internal “spin”
degree of freedom, e.g., cold atomic gases� is that a pertur-
bative treatment of the interactions about the noninteracting
limit, and thus Fermi-liquid theory, fails. This is a conse-
quence of the pervasive nesting taking place at all densities
and polarizations due to the simple fact that the Fermi sur-
face reduces to two Fermi points. The central result to
emerge in one dimension is that, for many realistic param-
eters, the low-energy physics is gapless and described by a
universal low-energy theory called “Luttinger liquid” �LL�
theory.1–3 According to LL theory, there are no electronlike
quasiparticles analogous to those found in Fermi-liquid
theory �which describes interacting electrons in three dimen-
sions�. Instead, the low-energy physics is dominated by
bosonic collective excitations. LL theory also states that for
finite interactions there will be a spin-charge separation with
distinct collective spin and charge excitations that each have
their own characteristic velocity and Hamiltonian. The spec-
tral properties of the LL are very different from a Fermi
liquid, but have been computed and are known.4–6

A particularly good realization �low disorder� of one-
dimensional electrons is found in high mobility semiconduc-
tor heterostructures of the type often used to study the frac-
tional quantum Hall effect. Related systems were used
recently to establish the presence of the LL physics in quan-
tum wires.7,8 While previous carbon nanotube
experiments9,10 demonstrating a power-law form of the tun-
neling density of states were correctly interpreted as an indi-
cation of the LL behavior, they did not unambiguously es-
tablish its existence because they did not probe the full

spectral function of the system due to the local tunneling of
electrons �which does not allow momentum resolution�. The
key feature of the semiconductor heterostructure devices is
that parallel wires can be fabricated and momentum-resolved
tunneling experiments can be performed. It is the momentum
resolution that allowed the dynamical properties of the wires
to be measured and the LL behavior to be unambiguously
observed.7,8

However, these experiments also showed a distinct set of
behaviors when the temperature was estimated to be on the
order or much larger than the characteristic spin energy.11 In
this regime, LL theory is not expected to hold, but rather a
separate theory describing “spin-incoherent” electrons takes
over.12 It turns out that this “spin-incoherent Luttinger liq-
uid” �SILL� has many more universal properties than the
LL,12 but its conclusive demonstration in experiment is not
yet universally agreed upon.13 Part of the challenge is that
for realistic parameters many one-dimensional systems fall
in the crossover regime between LL and SILL, greatly com-
plicating the interpretation of the experiments.14,15 This
crossover regime is not easily or accurately handled by ex-
isting analytical methods, so a numerical approach is re-
quired.

In this work, we describe a technique well suited to this
challenge and compute several quantities that can be directly
compared to experiment. The qualitative agreement with ex-
isting experiments in Ref. 11 provides further evidence that
the spin-incoherent regime has indeed been reached. At
present, there are no other numerical methods that have been
demonstrated to accurately access the parameter regimes and
system sizes we study here. A strength of our density-matrix
renormalization-group �DMRG�-based calculation is that it is
free of the artifacts introduced by statistical sampling, such
as in quantum Monte Carlo �QMC�. Our calculations start
deep within the spin-incoherent regime and approach the
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crossover regime “from above” �i.e. from temperatures
above than the crossover temperature�, complementing exist-
ing analytical methods that attempt to approach the crossover
regime “from below” using LL theory. Most importantly, the
method accurately captures the crossover regime allowing its
properties to be revealed. Such information can be crucial in
the proper interpretation of experiments in the strongly inter-
acting regime �which are always at finite temperature� and
can be used as an aid in the development of approximate
analytical methods to describe this regime.

II. SPIN-INCOHERENT HUBBARD CHAIN

To be concrete, we study the one-dimensional Hubbard
model,

H = − t �
i=1,�

L

�ci�
† ci+1� + H.c.� + U�

i=1

L

ni↑ni↓, �1�

where ci�
† creates an electron of spin � on the ith site along a

chain of length L. The hopping parameter of the Hubbard
chain is t, the onsite interaction energy is U, and we take the
interatomic distance as unity. In the limit of large repulsive
U, we can equivalently consider the t-J model, defined as

Ht-J = − t �
i=1,�

L

�ci�
† ci+1� + H.c.�+ J�

i=1

L �S� i · S� i+1 −
1

4
nini+1� ,

�2�

where the constraint forbidding double occupancy has been
imposed. The natural excitations of this model are charge
and spin collective modes �holons and spinons, respectively�
with different velocities that depend on the ratio U / t or J / t.
In the U→�, J→0 limit, the ground state factorizes into the
product of a fermionic wave function ��� and a spin-wave
function ���,16

�g.s.� = ��� � ��� . �3�

The first piece, ���, describes the charge degrees of freedom
and is simply the ground state of a spinless noninteracting
tight-binding Hamiltonian. At finite U, the spins are gov-
erned by a Heisenberg interaction,

Hs = J�
i

S� i · S� i+1, �4�

where J depends on the charge wave function and is propor-
tional to 4t2 /U.17 In the U→�, J→0 limit, the spin states
are degenerate and the dispersion is just a noninteracting
band ��k�=−2t cos�k�, but any finite interaction will lift this
degeneracy and give the spin degree of freedom some dis-
persion. The factorized wave-function approach has been
used in a number of key earlier studies16,17,20,21 in the
strongly interacting regime, but we do not make such an
approximation here.

In Fig. 1 we show the momentum-resolved spectrum of a
chain with L=64 sites and N=48 particles, for values of
J=0.5 and 0.05 �all quantities are in units of the hopping�,
obtained with time-dependent DMRG at zero

temperature.18,19 The spectrum is clearly gapless, displaying
a weakly dispersive spinon band of width �J and broad
holon bands of width �4t. Our results agree in the U→�
limit with the dispersion calculated in Refs. 20 and 21 using
the factorized wave function 	Eq. �4�
 and also with the exact
diagonalization results for the t-J model in Ref. 20, at the
same density and similar value of parameters. For small
values of J we see an almost nondispersive spinon band. In
this case, a spin-incoherent behavior would be observed at a
finite temperature larger than the characteristic spin
energy scale, but much smaller than the Fermi energy
J�T�EF� t. When these conditions are realized, the spins
are totally incoherent, effectively at infinite temperature,
while the charge sector remains very close to the ground
state.

III. METHOD

The key idea behind our calculation is thermofield
dynamics.22–28 This construction allows one to represent a
mixed state of a quantum system as a pure state in an en-
larged Hilbert space. Consider the energy eigenstates of the

FIG. 1. �Color online� Momentum-resolved spectrum at zero
temperature of a t-J chain of length L=64, with N=48 particles, and
�a� J=0.5 and �b� J=0.05 �in units of t�, obtained with time-
dependent DMRG. Negative frequencies correspond to the photo-
emission spectrum obtained by removing a fermion, while positive
values correspond to inverse photoemission. The spinon bands have
a weak dispersion of width �J. Holon, and corresponding shadow
bands, is clearly visible. Frequencies are measured in units of t.
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system in question �n�, described by a Hamiltonian H, and
introduce an auxiliary set of fictitious states �ñ� in a one-to-
one correspondence with �n�. We can then define the un-
normalized pure quantum state,

������ = e−�H/2���0�� = �
n

e−�En/2�nñ� , �5�

where ñ is a copy of n in the auxiliary Hilbert space,
�=1 /T is the inverse temperature, and ���0��=�n�nñ� is our
thermal vacuum. Then the exact thermodynamic average of

an operator Ô �acting only on the real states� is given by

Ô� = Z���−1�����Ô������ , �6�

where the partition function is the norm of the thermal state
Z���= ���� ������. We can clearly see how the calculation
of a thermodynamic average reduces to calculating a conven-
tional expectation value of an operator in a pure quantum
state, at the price of working in a larger Hilbert space.

At �=0, the state ���0�� is the maximally entangled state
between the real and the fictitious systems. We can see that
this is independent of the representation, and we can choose
any arbitrary basis. In particular, it is natural to work in an
occupation number representation where the state of each
site i takes on a definite value ni. One finds

���0�� = �
i

�
ni

�niñi� = �
i

�I0i� , �7�

defining the maximally entangled state �I0i� of site i with its
“ancilla,” the local degree of freedom in the auxiliary sys-
tem. At this point it becomes convenient to perform a time-
reversal transformation on the ancillae. Therefore, for the
case that concerns us, where double occupancy is forbidden,

this state can be written as �I0i�= �↑ , ↓̃�− �↓ , ↑̃�+ �0, 0̃�. This
simple step allows us to work in a basis where the total spin
projection Stot

z of the chain-ancilla system is effectively
zero.29 We emphasize that both spin and charge degrees of
freedom appear in �I0i� and are therefore treated on equal
footing as regard to finite-temperature effects �subject, of
course, to the no double-occupancy constraint�.

The state of the system at an arbitrary temperature � is
obtained by evolving the maximally mixed state in imagi-
nary time, Eq. �5� with �=0, using the Hamiltonian acting
on the real degrees of freedom. The ancillae do not have any
interactions controlling their dynamics. They evolve only by
their entanglement with the physical spins, effectively acting
as a thermal bath. This is the basis of the finite-temperature
DMRG method.29 Notice that, at zero temperature, the site
and the ancilla are totally disentangled, while at finite tem-
perature there is always a finite degree of entanglement that
only depends on the dynamics of the system.

An important consequence of the previous description is
that it would correspond to working in the grand canonical
ensemble: even though the spin and charge quantum num-
bers are conserved for the enlarged system, this is not the
case if we restrict ourselves to the physical chain. In order to
work in the canonical ensemble we need to start from a ther-
mal vacuum where the physical states �n� and their copies �ñ�
have each a fixed number of particles. To achieve that, we

are going to construct a state that is a sum of all possible
states of charge and spin, with the constraint that the total
number of particles on the chain has to be equal to N and that
the charge state of the ancillae is an exact copy of the charge
state of the physical chain. We achieve this by calculating the
ground state of a very peculiar Hamiltonian, using the con-
ventional DMRG,

H = − �
i�j

�	i
†	 j + H.c.� . �8�

The operator 	† �	� creates �annihilates� a singlet between
the physical spin and the ancilla,

	i
† = �ci↑

† c̃i↓
† − ci↓

† c̃i↑
† �/�2, �9�

where the “tilde” operators act on the ancillae on site i. The
ground state of this Hamiltonian is precisely the equal super-
position of all the configurations of N “physical site-ancilla”
singlets on L sites. This state can be represented very effi-
ciently in terms of a matrix-product state and, consequently,
by the DMRG method. In practice, the number of DMRG
states required is on the order of the number of particles. We
find the use of the “entangler” Hamiltonian practical and
convenient. Note that it does not disrupt the SU�2� symmetry
of the t-J model.

IV. GREEN’S FUNCTIONS

We study the spectral properties of a spin-incoherent
chain by evaluating the Green’s functions at time t at finite
spin temperature,

G�x − x0,t,�� = �����eiHt-JtÔ†�x�e−iHt-JtÔ�x0������� ,

�10�

where the generic operators of interest Ô�x� , Ô†�x� act on the
system at site x and the Hamiltonian Ht-J governs the physics
of the actual physical chain, not including the ancillae.

We use a similar method to the one described in Ref. 30.
The calculation proceeds as follows: first, we evolve the
maximally entangled state in imaginary time to the desired
value of � measured in units of 1 / t, e.g., �=2 means

T= t /2. Then, an operator Ô�x0=L /2� is applied in the center
of the chain. The resulting state is evolved in real time, and
at every step we measure the overlap with the state

Ô�x�e−iHt-Jt������. We obtain the desired Green’s function in
frequency and momentum by Fourier transforming the re-
sults in real space and time. Both states, ������ and

Ô�x0�������, have to be evolved in real time. In this work we
use a third-order Suzuki-Trotter decomposition with a typical
time step 
=0.1, both for the real- and imaginary-time parts
of the simulation, keeping 800 states, enough to maintain the
truncation error below 10−5. As customary in most DMRG
calculations, we used open boundary conditions, and by do-
ing the Fourier transform we are assuming that boundary
effects can be ignored, as though the system was transla-
tional invariant. In order to minimize the finite-size effects
induced by the boundaries31–33 we evolve to times t=15 and
Fourier transform to frequency using a Gaussian window or
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width �=6 in the time domain, which in turn leads to a mode
getting an artificial broadening in frequency proportional to
1 /�. We point out that we have not used the linear prediction
method introduced in Ref. 30, but the bare data obtained
from the simulation. At zero temperature we have found that
this works well, reproducing the features observed in the
Bethe ansatz solution of the Hubbard chain 	compare our
Fig. 2 to Fig. 7 in Ref. 16
, namely, the singularity at 3kF
�seen at 2�−3kF�. At finite temperatures the system develops
a finite correlation length, which is further enhanced at
higher temperatures due to the spin-incoherent
mechanism—to be discussed below. This is reflected in a
localization that makes the boundary effects irrelevant.
Working with open boundary conditions also avoids the de-
generacy occurring in systems with periodic boundary con-
ditions and size L=4n, with n being an integer.16 The nu-
merical errors can be attributed to the accumulation of
truncation error and the Trotter decomposition. The latter is
under control, while the truncation error would translate into
error bars that are much smaller than the broadening in fre-
quency and are therefore ignored for visualization purposes.

V. RESULTS

In Figs. 2 and 3 we show some characteristic physical
quantities at finite temperature, such as the specific heat CV,
spin structure factor S�k�, and momentum distribution func-
tion n�k�, for a chain with L=32 sites and N=24 fermions
�3/8 filling�. All results correspond to a value of J=0.05. The
correlation functions are defined as

S�k� =
1

L
�
i,j

Si
zSj

z�eik�i−j�, �11�

n�k� =
1

L
�
i,j

ci↑
† cj↑�eik�i−j�. �12�

The specific heat in Fig. 2 shows a clear peak at a value of
the temperature T�J, signaling the onset of the spin-
incoherent regime where the spin degrees of freedom are
highly thermalized. At larger temperatures, the spin degrees
of freedom are saturated, but a broad peak associated with

the charge degrees of freedom is apparent. The spin structure
factor in Fig. 3�a� shows a peak at momentum k=2kF that
develops precisely at low temperatures T�J. The zero-
temperature result is consistent with that computed in Ref.
16. The momentum distribution in Figs. 3�b� and 3�c� dis-
plays the expected Luttinger liquid profile, with no disconti-
nuities at the Fermi point. Below this value of the tempera-
ture we also notice the onset of a singularity at k=3kF in the
momentum distribution.34 This singularity corresponds to the
transfer of spectral weight to the shadow bands that originate
from the scattering with the spin fluctuations that diverge at
k=2kF.16,20,21 While this behavior had already been seen in
finite-temperature calculations using the factorized wave
function �4� in Ref. 36, our calculations do not rely on the
factorized wave function or the XY approximation in the spin
sector �rather than full Heisenberg symmetry�. Moreover,
they can be readily generalized to a number of other spin
symmetries, including the incorporation of spin-orbit effects.

We approximated the temperature-dependent Fermi mo-
mentum kF

� by taking the inflection point where n�k� changes
curvature and plotted the result in Fig. 3�c�. The Fermi mo-
mentum moves continuously from the zero-temperature
value kF=�N /2L to 2kF, with the crossover region centered
at T�J, as expected.37 We actually observe a saturation
value below 2kF, but this is an artifact of taking the nonrig-
orous definition of kF as the inflection point in n�k�. It is
important to note that n�k� for the Hubbard or t-J models
changes its form qualitatively for fillings larger than 1/4, but
less than 1/2.16

The “special” value of 1/4 filling in the lattice models �as
opposed to the effectively low-energy theories� is related to
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FIG. 2. Specific heat of a t-J chain of length L=32 and N=24
fermions, and a value of J=0.05 calculated with time-dependent
DMRG. Temperature is in units of the hopping t.
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FIG. 3. �a� Spin structure factor and �b� momentum distribution
of a t-J chain of length L=32 and N=24 fermions, with J=0.05, for
different values of the temperature. The thick full lines in �a� and
�b� correspond to T=0. Arrows indicate increasing � �decreasing
temperature� in units of 1 / t, in steps of 4. �c� shows the behavior of
the “Fermi momentum” kF

� as a function of temperature, obtained as
the inflection point in the momentum distributions shown in �b�.
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the underlying Hubbard model, and the qualitative change
for fillings above it and below it can be understood in the
following way: the shadow bands carry a significant amount
of spectral weight above k=kF. When the density is larger
than quarter filling, the shadow band covers all k space from
zero to �. This translates into and increase in weight above
kF. 	Recall that n�k� is the integrated weight for �0.20,21,35


One further feature of n�k� is particularly striking: the
values n�kF� and n�2kF� are temperature independent within
the accuracy of our calculation, with kF��N /2L and 2kF
twice kF, rather than the value obtained by the inflection
point of n�k�. The same behavior was also observed in the
factorized wave-function approach with the XY symmetry
described in Ref. 36. Evidently, then, it is independent of the
spin symmetry and probably results from an effective tem-
perature independence of the charge sector �temperature is
taken to be precisely zero with respect to the charge sector in
Ref. 36�. Since both calculations are effectively in the large
U limit, it may be that the temperature independence of these
two points can be attributed to two extreme “charge configu-
rations:” one “evenly spaced” and one “maximally paired”
�two sitting right next to each other�. In the density-density
correlations, the former would correspond to 4kF oscillations
and the latter to 2kF oscillations. In the large U limit, it must
be that these are both extreme “spin-independent” configu-
rations in the sense that evenly spaced electrons or maxi-
mally paired electrons have only minimal contributions from
the spin energy, leading to the temperature independence of
n�kF� and n�2kF�.

Qualitatively, the shift from kF to 2kF 	as measured by the
inflection point of n�k�
 when the spin-incoherent regime is
obtained can be understood as a shift from particles with spin
dynamics to particles that are effectively spinless.37,38 In the
large but finite U limit of the Hubbard model, electrons at
zero temperature “dimerize” ever so slightly and in this way
maintain a “memory” of their noninteracting kF. However,
once T�J, this dimerization is washed out �because the en-
ergy scale for dimerization is set by J� and effectively shifts
kF to its “spinless” value of 2kF.12

Figure 4 shows the momentum-resolved photoemission

spectrum obtained by taking Ô�x�=c↑�x� in Eq. �10� in the
previous treatment. At infinite temperature, it resembles a
band of noninteracting spinless fermions, following a
−2t cos�k� dispersion with a “width” much larger than seen
in a zero-temperature calculation �e.g., the result in Fig. 1 for
a larger system size�. As the temperature is lowered, and � is
increased, we see the spectral weight being transferred from
positive to negative energies. At the same time, the band
appears to broaden in the momentum direction, also splitting
into seemingly discrete weakly dispersive levels. At a value
of ��10, the strongest features of the dispersion describe a
number of discrete levels on top of a band that follows the
spinless dispersion, with very small weight above the Fermi
level. The high weight at zero momentum corresponds to the
high density of states in the van Hove singularity of the
spinless band. At temperatures below T=1 /20=J, the disper-
sion splits into two “echoes,” centered at k= �kF, showing
the emergence of the shadow bands and features more remi-
niscent of a LL. We have verified that the gap between the

horizontal levels are a finite-size effect, and the spacing
grows as 1 /L as we reduce the system size. The two-peaked
features for ��10 in the horizontal dispersion correspond to
scattering of charge states with the nondispersive spins
present in the spin-incoherent regime.

Many of these features can be qualitatively understood
within SILL theory. First imagine a system at zero tempera-
ture with J� t. At the fillings we consider, this system will
behave as a LL because it is gapless. The spectral function
will exhibit cusplike singularities at =v�k and
=v�k, where v� is the spin velocity and v� is the charge
velocity.4,5 Since J� t, v��v�. The “sharpness” of the cusps
is determined by the interaction parameters of LL theory in
the spin and charge sectors.1,2 If one now adds a small finite
temperature �so as to remain in the LL regime� the LL cor-
relation functions obtain a finite correlation length
��v� /T. This correlation length will smear and broaden the
cusplike singularities.6 As the temperature is further raised,
there is a smallest correlation length than can be obtained:
the interparticle spacing. In the spin-incoherent regime, �
effectively saturates at this value and leads to a universal
broadening38–40 of �ln�2�kF /� of the singularity associated
with the charge mode and a vanishing of the singularity as-
sociated with the spin mode. This effect is evident in Fig. 4
for �=1 when one compares to the zero-temperature result in
Fig. 1. For ��1 /J the shadow bands are beginning to

FIG. 4. �Color online� Photoemission spectrum of a one-
dimensional t-J chain with L=32 sites and N=24 fermions, and
J=0.05. Different panels show different values of temperature
T=1 /�. The crossover to the spin-incoherent regime is achieved at
��20.
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emerge and the spin degrees of freedom are starting to be-
come dynamical leading to a complicated spectral form.

Finally, we focus on the crossover regime at �=10. The
spectrum is shown with clarity in Fig. 5. These results can be
compared to experiments in nanowires.11 �See, e.g., their Fig.
3.� The qualitative agreement indicates that the experiments
were most likely in the regime of highly thermalized spin
states. Moreover, our calculations conclusively demonstrate
that disorder effects need not be invoked to explain the
data.11,13 These results can also be compared to high-energy
angle-resolved photoemission experiments on quasi-one-
dimensional SrCuO2, where the V-shaped dispersion is also
observed.41

VI. SUMMARY AND CONCLUSIONS

We have presented a numerical study of the spectral prop-
erties of t-J chains at finite temperature, using a generaliza-
tion of time-dependent DMRG techniques that combine evo-
lutions in real and imaginary times. The study of finite-
temperature effects on the spectral functions of one-

dimensional systems using quantum Monte Carlo
techniques41–43 has mostly focused on the interpretation of
photoemission experiments on quasi-one-dimensional com-
pounds such as SrCuO2 �Refs. 44–46� and TTF-TCNQ.47

While the Monte Carlo technique is free of the sign problem
in one dimension, the calculation of spectral properties in-
volves an analytical continuation from Matsubara frequen-
cies, which is not straightforward in the spin-incoherent re-
gime. The application of a maximum entropy method to the
results is affected by statistical uncertainties, inherent from
the stochastic QMC approach. On the other hand, our
method is naturally applied to study the spin-incoherent re-
gime and we have demonstrated that it is quantitatively ac-
curate by comparison with Bethe ansatz results in various
limits.

We have clearly seen that at temperatures on the order of
T�J, the system experiences a crossover from a spin-
coherent to a spin-incoherent regime, which is clearly mani-
fest in the spectra. Our results in finite systems show a com-
pelling qualitative agreement with experiments in
nanowires.11 The fact that our systems have a finite size
works to our advantage since our parameters are similar to
the experimental conditions, which involve wires at low den-
sities with few electrons.

In summary, we have been able to address an important
and analytically inaccessible regime of strongly correlated
one-dimensional systems. The time-dependent DMRG
method has the power to access the full crossover from the
SILL to LL behavior as a function of temperature and there-
fore is a powerful tool in the interpretation of experimental
results and as a guide to analytical approximations not yet
developed. The technique can be readily adapted to study a
number of related problems including cold atomic gases,
which are notoriously plagued by finite-temperature
effects.48
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